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Abstract—Dynamic IR drop analysis is a critical step in the
design signoff stage for verifying the power integrity of a chip.
Since the analysis is extremely time-consuming, it has led to the
emergence of machine learning (ML)-based methods to expedite
the procedure. While previous ML approaches have demonstrated
the feasibility of IR drop prediction, they often neglect package
effects and do not address diverse IR criteria for memory and
standard cells. Thus, this paper introduces a novel ML-based
approach designed for a fast and accurate prediction of multi-type
IR drop, considering package effects. We develop new package-
related features to account for the package impact on IR drop. The
proposed model is based on a multi-task U-net architecture that
not only predicts two types of IR drops simultaneously but also
increases prediction accuracy through comprehensive learning. To
further enhance the model performance, we introduce the Input
Fusion Block (IFB), which unifies units across channels within
the input feature maps, leading to improved prediction accuracy.
The experimental results show the across-pattern transferability
of the proposed IR drop prediction method, demonstrating an
RMSE of less than 5SmV and an MAE of less than 2mV on the
unseen simulation patterns. Additionally, our proposed method
achieves a 5X speed-up compared to the commercial tool.

I. INTRODUCTION

In advanced process technologies, IR drop analysis is crucial
in the design signoff stage to ensure the power integrity of a
chip. IR drop refers to the voltage drop in the power distribution
network (PDN) of an integrated circuit (IC) when current flows
through the PDN. Severe IR drop on the critical path may
cause timing violations, which could further lead to functional
errors. Accurate analysis necessitates considering not only the
on-die PDN but also package effects on the PDN. Even in
cases with low package resistance and inductance, packages
can significantly impact the IR drop due to the substantial
accumulated current demands of cells and current variations
triggered by the concurrent switching cells.

Dynamic IR drop analysis [10] is performed by simulating
the switching activities of cells to estimate the IR drop across a
chip. A substantial number of simulation patterns is required to
cover various operation conditions. After the analysis, different
IR reports are generated and applied to various cells based on
their circuit behavior. For example, Worst-avg IR drop is the
worst of average IR drop values among all timing windows,
while worst IR drop is the worst IR drop value during the entire
simulation period. A typical design comprises both memory
cells and standard cells. In the signoff stage, standard cells are
evaluated by worst-avg IR drop to ensure the cell delay meets
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Fig. 1. Comparison of IR drop analysis flows by commercial tools and ML-
based methods.

the specified timing constraints; memory cells are evaluated by
worst IR drop to guarantee data integrity.

Figure 1(a) shows the industrial flow of dynamic IR drop
analysis with commercial tools. Rail analysis is conducted after
power analysis, and both worst-avg IR drop report and worst
IR drop report are generated. Although commercial tools offer
accurate IR drop analysis, the escalating number of cells in
modern technology results in a prohibitively long simulation
time. For example, for a design comprising around 70 million
cells, a single pattern simulation in the industrial flow would
exceed 40 hours. Besides, complete parallel simulation of
patterns is often impractical in real-world scenarios. As a result,
simulations may demand at least one week for just a few
dozen patterns. Furthermore, IR signoff typically involves an
iterative optimization process. Before the IR drop constraints
are met, several iterations of Engineering Change Order (ECO)
and dynamic IR drop analysis are performed to fix violation
cells. Therefore, many machine learning (ML)-based models
are explored to speed up the IR drop signoff flow.

ML-based models aim to provide a quick overview of a
design’s IR drop by efficiently predicting the IR drop and
identifying the hotspots of a design. With quick prediction,
designers can preemptively fix violation cells without waiting
for IR drop reports generated by time-consuming rail analysis.
Figure 1(b) shows the ML-based IR drop prediction flow of
previous works [1], [3], [6]-[9], [14]. Power analysis and
resistance (R) extraction are performed before model pre-
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diction since accurate IR drop prediction requires current-
related and impedance-related information. The R extraction
part is separated from rail analysis because R extraction can be
performed independently by commercial tools. After feature
extraction, the IR drop prediction results will be generated
by the ML-based models. Notably, some studies [3], [4], [7]
have employed self-defined effective distance to represent the
resistance information. Although the runtime of R extraction
by commercial tools can be saved, parsing additional design
files to calculate effective distance incurs significant time cost.
Besides, the effective distance is less accurate than resistance
information obtained directly from R extraction reports.

Although prior ML-based studies have demonstrated the
feasibility and efficiency of applying machine learning to IR
drop prediction, there are significant challenges in integrating
these methods into practical IR signoff flow for the following
reasons. First, to our understanding, previous studies have not
addressed the different types of IR drops. In addition, most
previous studies focused on the IR drop of on-die PDN and
die-related features while overlooking the package effect on IR
drop issues. Therefore, prior ML-based prediction methods are
unsuitable for practical IR signoff processes.

To address the aforementioned issues, we introduce a novel
ML-based approach for fast and accurate multi-type IR drop
prediction with the consideration of package effect. The overall
flow of the proposed approach is shown in Figure 1(c). We
extract and develop the on-die and package-related features to
explicitly account for the package effect on IR drop. Then, we
design a multi-type IR drop predictor based on the multi-task
U-Net architecture. The proposed predictor not only efficiently
predicts two types of IR drops simultaneously but also increases
prediction accuracy through comprehensive learning. Notable
enhancements in the proposed predictor include: (i) An Input
Fusion Block (IFB) is designed to learn local information from
both current-related and impedance-related input maps and then
combine them to yield IR-related feature maps; and (ii) Channel
attention layers [13] are integrated prior to the skip connections,
guiding the model to focus on the most relevant feature maps
for worst-avg IR drop and worst IR drop prediction separately.

The main contributions of this work are as follows:

« We propose an ML-based multi-type IR drop predictor for
comprehensive learning about the worst-avg IR drop and
the worst IR drop.

« We develop the new package-related features to consider
the package effects on IR drop.

o We introduce the Input Fusion Block (IFB) for improving
model performance by unifying the units of input features.

o Our proposed model with high across-pattern transferabil-
ity achieves an MSE of less than 2mV and a 5X speed-up
compared to the commercial tool.

The rest of this paper is organized as follows: Section
Il briefly reviews the related works of ML-based IR drop
prediction and the background of multi-task U-Net models.
Section III presents the proposed ML-based IR drop prediction
approach. Section IV shows the experimental results. Finally,
Section V concludes this work.

II. PRELIMINARIES
A. IR Drop Prediction

IR drop prediction has seen the development of several ML
approaches, mainly categorized into image-based [3], [6], [7],
[14] and tree-based methods [1], [6]. Image-based approaches,
utilizing deep learning models like Convolutional Neural Net-
works (CNNs) [11] and U-Net [12], convert circuit features
into feature maps for model training and prediction. The model
outputs can be tile-based IR drop maps or instance-based IR
drop values by reverse transformation. Tree-based methods, on
the other hand, employ models such as XGBoost [2], using
tabular data as inputs to output instance-based IR drop values.
Although tree-based approaches can directly predict instance-
based IR drop values and are scalable for large feature counts,
their performance is limited because the tabular data lacks
spatial information about the instances in a design. Therefore,
in this work, our proposed method adopts an image-based
approach for enhanced IR drop prediction.

B. Multi-task U-Net Model

U-Net, derived from the traditional convolutional neural
network, was first designed and applied to process biomedical
images [12]. The U-Net architecture consists of an encoder and
a symmetrical decoder. The encoder comprises convolutional
layers that capture local features and downsampling layers
that expand the receptive field of each data point. Thus, the
high-dimensional features with local and global information
can be extracted from the input images. The decoder employs
convolutional and upsampling layers to reconstruct the target
image from these high-dimensional features generated by the
encoder. Moreover, the skip connection strategy is adopted
to build the short paths from the encoder to the decoder.
Combining low-dimensional features allows the decoder to use
more precise fine-grained information for image reconstruction.

Building upon the U-Net architecture, Multi-tasking learning
(MTL) model [5] extends the model’s generality to handle
multiple learning tasks simultaneously within a single model
framework. The core principle behind MTL is to exploit com-
monalities and differences across tasks, leading to improved
learning efficiency and prediction accuracy for these tasks.
By sharing parameters and optimizing jointly for multiple
tasks, MTL models demonstrate superior generalization and
robustness compared to models trained on individual tasks.

Our proposed method utilizes a multi-task U-Net model to
efficiently and precisely predict different types of IR drops. The
detailed concepts and additional enhancements of our proposed
model will be introduced in the following sections.

I1I. DYNAMIC IR DROP PREDICTION

In this section, we first introduce our main idea for approx-
imate IR drop estimation, which motivates the development of
both the input features and the architecture of the proposed
model. Then, we show the input feature set related to on-
die and package. All the input features are transformed into
2-dimensional (2D) maps for model training and prediction.
Finally, we present the proposed multi-type IR drop prediction
model.
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A. IR Drop Estimation

Figure 2 shows the simplified equivalent die-package circuit
model, which indicates that the IR drop of a cell (/R ;) from
the power supply to the cell’s power pin comprises the IR drop
contributed by the die (I Ry, —qgie) and the IR drop contributed
by the package (I Rpjg). Thus, IR c;; can be simply represented
as:

IRcell = IRonfdie + IRpk:g
= lon—die X Zonfdie + kag X Zpkga (l)

where 1,,,_4e 1s the demand current of a cell, and Z,,,_gic 18
the equivalent impedance from a cell to the die-bump interface.
Ip,ig is the current drawn by a bump, and Z,;,, is the equivalent
impedance of the package from a bump to the package-PCB
interface.

Ipkg Ton-die
— > instance;
Zpkg + Zon-die ( : ) It
power
supply bump

Fig. 2. Simplified equivalent die-package circuit model.

B. Feature Extraction

Based on Equation 1, we have developed four categories
of input features: on-die current-related, on-die impedance-
related, package current-related and package impedance-
related, as shown in Table I.

1) On-die Current-related Features:

To estimate the on-die current I,, 4, of the cells in a
design, we extracted power-related features and peak current
of each cell from the reports (power.rpt, ptiavg files) generated
by power analysis. The power-related features represent the
average current, and the peak current represents the worst-case
scenarios during simulation.

« Internal power (P; . ): power consumed inside the
cell induced by the short current between PMOS and
NMOS while the transition occurs.

« Switching power (P, . _,,.): power consumed in charg-
ing/ discharging of the output load.

« Leakage power (P, ): power consumed when the cell
is idle.

o Peak current (Ip..x
simulation period.

on—die

): maximum current during the

on—die

2) On-die Impedance-related Features:

Because the IR drop of the on-die PDN is mainly caused by
the current flowing through the resistance of the on-die PDN,
resistance information is necessary for IR drop prediction.
Thus, we extracted effective resistance and least-resistance-
path resistance to represent the resistance information from the
reports generated by R extraction.

TABLE I
FEATURE LIST AND IR GROUND TRUTH.

Feature list
. Internal power (P;_ _ ,..)
On-die Switching power (Ps,,, _;..)
current-related on—die
. Leakage power (P, . )
features on—die
Peak current (Upeak,,, _ 4i.)
On-die Effective resistance (Regpyp = .. )
impedance-related Least-resistance-path resistance
features (Rirp,, i)
Package
current-related Bump peak current (Ipeak,,, )
features
. Package Effective resistance (Reyfy, , )
impedance-related Effective inductance (L - )
features ef fkg
IR drop label
Standard cell worst-avg IR drop (I Ryorst—avg)
Memory cell worst IR drop (I Rworst)

« Effective resistance (R.ry ., ): the effective resistance
from the power pin of a cell to the die-bump interface.

« Least-resistance-path resistance (R;,,,, .. ): the resis-
tance on the least-resistance path from the power pin of a
cell to the die-bump interface.

3) Package Current-related Features:

Due to the challenges in acquiring actual measurement of
bump current, we estimated the bump current in a pessimistic
way. As shown in Figure 3, each on-die cell connects to every
bump, and the current flowing through bumps is diverted to
cells through these paths. Assuming that most of the current
flows through the least-resistance path, we estimate the bump
current as the sum of the peak currents from the corresponding
cells along the least-resistance path. For example, in Figure
3, bump2 is on the least-resistance paths of cells a, b, and c.
Thus, the estimated current of bump2 is the sum of the peak
current of cells a, b, and c. Once the currents of all bumps are
determined, we then utilize least-resistance paths to map these
bump currents back to cells. Thus, we can obtain the estimated
bump peak current feature for each cell.

o Bump peak current (Ipeak,,kg)I the estimated current of
the bump corresponding to each cell.

ball 1

ball 2

ball 3

Die
J cell Package

— least-resistance path
resistance path

Fig. 3. Cross-sectional view of a circuit structure.
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4) Package Impedance-related Features:

Because of the significant instantaneous current variation
in a package, not only resistors but also inductors have a
notable effect on the IR drop of a package. We extracted the
effective resistance and inductance of each bump from the
package reports, where the calculation of effective inductance
has considered both self-inductance and mutual inductance.
Then, based on the bump-cell mapping method mentioned in
III-B3, we can obtain the package impedance-related features
(Reffongs Leffon,) Of every cell.

o Effective resistance (Rcsy,, ): the effective resistance

from a bump to the package-PCB interface.

« Effective inductance (L. fog): the effective inductance

from a bump to the package-PCB interface.

Among the features shown in Table I, except for the power-
related features, all the features have two values from power and
ground pins. Therefore, there are a total of 3+ (9—3)%2 = 15
input features.

C. Input Feature Maps

To enable the proposed model to better account for the
neighbor information of each cell in a design, we transformed
the aforementioned cell-based features into 2D feature maps.
Initially, cell-based features are converted into image-based
features, which are composed of uniform-sized tiles. If a tile
covers several cells, the value assigned to that tile is determined
by the maximum feature value among these cells. Thus, the
critical cells with higher IR drops are adequately represented
by focusing on the maximum values.

For efficient ML-based model training and inference, these
image-based features are further divided into several sub-
images, termed 2D feature maps. After feature map transfor-
mation, four types of 2D feature maps (M My

on—die’ on—die?

Mi,,,, and Mz ) and two golden IR maps (MR, ,..;_qu,
and Mg, ,...) are generated for subsequent model training and
prediction.

D. Multi-type IR drop Model

As shown in Figure 4, the proposed multi-type IR drop model
is composed of three main components: (i) Input Fusion Block,
(i) Encoder, and (iii) Two decoders for two types of IR drop.

1) Input Fusion Block (IFB):

Drawing inspiration from the IR drop composition in Equa-
tion 1, the IFB is engineered to intake and process four distinct
types of input feature maps: (M My My,,,, and
Mz,,,)- These maps are separately processed through convo-
lution layers, which comprise a 3x3 depthwise convolution, a
1x1 pointwise convolution and a 3x3 convolution layer. Every
convolution layer, followed by batch normalization and SiLU
activation, can capture the local information of input feature
maps. The output feature maps from these convolutional layers
are integrated through element-wise multiplication (®) and
concatenation (), forging composite IR-related feature maps.
Finally, these IR-related feature maps are further processed
through two additional 3x3 convolution layers, producing the
final input feature map for the subsequent encoder. The IFB

on—die? on—die?

Input Fusion Block

|Ml:m—aie ﬂ MZan—dieﬂ | Mg ﬂ | Mzokg “
v v v v
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Fig. 4. Proposed multi-type IR drop model.

design ensures the consistency of feature map units of all
channels to enhance the model’s performance.

2) Encoder:

The encoder is designed to extract high-level information and
learn the interrelations among neighboring tiles. Each Down
Block in the encoder contains a max-pooling layer followed by
two 3x3 convolution layers, which efficiently extract the high-
dimensional feature maps from the low-dimensional feature
maps. As feature maps are processed through a series of Down
Blocks, the receptive field of feature maps enlarges, allowing
the model to capture information from a broader neighborhood.
The output feature maps of each Down Block are preserved
for subsequent concatenation with the decoder through skip
connections, facilitating the reconstruction of the output IR
drop maps from the compressed representation.

3) Decoder:

In the decoder part, we employ dual decoders to sepa-
rately predict two types of IR drop maps (MjRr,,,.e_a,, and
Mrr,,,..)- Initially, the input feature maps of the Up Block are
directed through an up-sampling layer followed by two 3x3
convolution layers to produce the up-sampled feature maps.
For up-sampling, we utilize the pixel shuffle technique rather
than traditional interpolation methods to reduce the model
complexity.

The up-sampled feature maps are then concatenated with
corresponding feature maps from the encoder via skip con-
nections, enhancing the feature integration across the network.
Moreover, to help two decoders focus on the most relevant
feature maps for two-type IR drop prediction, we integrate the
channel attention layers [13] at each skip-connection from the
encoder to the decoder, as the red arrows shown in Figure 4.
Lastly, the concatenated feature maps are processed through
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two additional 3x3 convolution layers in the Up Block to
generate the output feature maps of the Up Block.

After progressing through a series of Up Blocks, the worst
and the worst-avg IR drop prediction maps from the two
decoders are generated. Here, we define a memory-standard-
cell mask beforehand, which is used to filter out the memory
tiles or the standard cell tiles from a map. We define a tile as a
memory tile when that tile covers no standard cells; otherwise,
the tile is a standard cell tile. Then, we combine two IR drop
prediction maps by using the memory-standard-cell mask to get
the final IR prediction map, where the memory tiles are with
the worst IR drop values, and the standard cell tiles are with
the worst-avg IR drop values.

4) Loss Function:

We developed a loss function with an additional penalty
term to effectively prioritize high-IR-drop regions during model
training. The threshold for identifying a high-IR-drop region
is set to 10% of the supply voltage. The loss function is con-
structed using the mean squared error (MSE) and is formulated
as follows:

loss(9,y) = MSE(g,y) + [MSE(9,) | § > 0.1 Viuppry], (2)

where g and y denote the golden and predicted IR drop values,
respectively, and Viypply represents the supply voltage. This
loss function double-weights errors in high-IR-drop regions,
enhancing the model’s sensitivity to critical hotspots in the
design. Furthermore, we calculated the loss not only on the final
IR drop prediction map, but also on the worst and worst-avg
IR drop prediction maps, thereby improving the comprehensive
learning of the model.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
method by comparing with the vanilla U-Net [12] and three
models we specifically designed to evaluate the benefits of
several proposed enhancements to improve IR prediction re-
sults, including (i) the package-related feature extraction, (ii)
multi-task model architecture, and (iii) input fusion block (IFB).
A direct comparison with previous works would be unfair,
as their models are not built using our proposed feature set.
We evaluate prediction results using Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). Additionally, the
model’s ability to identify hotspots will be evaluated using
Recall and Precision.

TABLE I
STATISTICS OF SIMULATION PATTERNS
Pattern #Violation Max IR Avg. pkg.
1D cells drop (mV) IR pct. (%)
1 3102 169.91 25.98
2 838 166.39 27.52
3 10976 159.89 23.19
4 14856 173.0 33.25

A. Experimental Setup

We evaluated the proposed methods on an industrial design
with an area of 4974um x 4630pm, comprising approximately

50 million cells. The supply voltage is 0.9V, and the process
technology is TSMC’s 4nm process. The input feature maps
and golden IR maps consist of 496 x 496 tiles, with each tile
sized 1pym x 1um.

We used four 300ns simulation patterns in our experiment.
Detailed statistics for these patterns are provided in Table II.
The number of violation cells and maximum IR drop indicate
the severity of IR drop. The average package IR percentage
reflects the average contribution of the package to the overall
IR drop of each cell.

To effectively capture the dynamic IR drop violation, all
300ns patterns were segmented into ten 30ns slices. We eval-
vated the model by training on three patterns (30 slices) and
testing on the remaining unseen pattern (10 slices). This evalua-
tion method demonstrates the model’s generalization capability
and transferability across various patterns.

The proposed model was implemented using PyTorch and
trained on eight NVIDIA A6000 GPUs. We used the Adam
optimizer with an initial learning rate of 0.001, which was
adjusted by cosine decay to optimize learning convergence. The
model takes 300 minutes for one-shot training over 600 epochs.

B. Dynamic IR Drop Prediction Results

To evaluate the benefits of the proposed enhancements, we

implemented four models for comparison, including:

o Vanilla U-Net [12]: the baseline model consists of a single
encoder and decoder, utilizing only on-die feature maps
(Mlonfdie’ MZonfdie)'

o +multi: the multi-type IR drop model with two decoders
to predict two types of IR drop maps (worst-avg IR and
worst IR).

o +multi+PKG: the model based on +multi architecture with
the on-die-related and package-related input feature maps
(M Mz My,.,» Mz,,,)-

o +multi+PKG+IFB: Our proposed model, as illustrated in
Figure 4, integrates all the aforementioned enhancements.

on—die? on—die?

Table III presents the models’ prediction performance and
hotspot identification abilities. For prediction performance, our
proposed model achieves the lowest RMSE and MSE across
all unseen test patterns compared to the other three models.
Furthermore, we observe that each proposed enhancement

Golden IR drop map Predicted IR drop map

Golden IR drop map Predicted IR drop map

Pattern 1
Pattern 2

oL : o = )
SRR

—

Pattern 3
Pattern 4

Fig. 5. Golden IR drop maps vs. Predicted IR drop maps of the proposed
model.
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TABLE III
IR DROP PREDICTION PERFORMANCE.

[ Prediction results |

Model Pattern 1 Pattern 2 Pattern 3 Pattern 4

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Vanilla U-Net [12] 3.57 1.85 3.44 1.88 5.34 1.96 5.13 2.00

+multi 343 1.74 3.67 1.99 4.62 1.63 4.68 1.76

+multi +PKG 33 1.71 3.39 1.79 4.52 1.54 4.65 1.70

+multi +PKG +IFB 3.11 1.61 3.2 1.71 4.0 1.34 4.50 1.64

[ Hotspot identification results |

Recall Precision Recall Precision Recall Precision Recall Precision

Vanilla U-Net [12] 0.89 0.83 0.90 0.85 0.70 0.91 0.73 0.95

+multi 0.94 0.83 0.94 0.73 0.85 0.83 0.86 0.87

+multi +PKG 0.94 0.81 0.93 0.69 0.86 0.81 0.87 0.87

+multi +PKG +IFB 0.96 0.77 0.96 0.69 0.90 0.81 0.91 0.84

progressively reduces RMSE and MSE, indicating that these
enhancements are effective for improving IR drop prediction.
For the hotspot identification, we set the 10% of the supply
voltage as the threshold for determining the hotspot tiles. Recall
means the percentage of actual hotspot tiles captured by the
model; Precision means the percentage of actual hotspot tiles
among the hotspot tiles predicted by the model. We aim to
identify a design’s hotspots to allow designers to preemptively
fix violation regions. Consequently, we pay more attention to
Recall than Precision. According to Table III, we can observe
that Vallina U-Net has weaker hotspot identification ability
on Pattern 3 and Pattern 4, which have a large number of
violation instances. However, our proposed model can capture
over 90% violation tiles for unseen testing patterns. In Figure 5,
we show the prediction and golden heatmaps of a slice from
four patterns. Compared to golden IR drop maps, our prediction
maps successfully capture most of the real hotspots, which is
reflected our model’s excellent performance in terms of Recall.

TABLE IV
RUNTIME COMPARISON BETWEEN INDUSTRIAL FLOW AND PROPOSED
ML-BASED FLOW.

[ Industrial flow [ Proposed ML-based flow |

Stage Runtime Stage Runtime
Power analysis 14 hrs Power analysis 3 hrs
R extraction 3 hrs
Rail analysis 25 hrs Feature extraction 1 hrs
IR prediction 3 mins
[ Total [ 39 hrs [ Total [ 7 hrs |
C. Runtime

Table IV shows a detailed runtime comparison of the in-
dustrial flow with a single 300ns simulation pattern and our
proposed flow with ten 30ns simulation slices. Analyzing a sin-
gle 300ns simulation pattern by the commercial tool typically
requires about 40 hours in the industrial flow, where the power
analysis takes about 14 hours, and the rail analysis takes about
25 hours. In our proposed flow, power analysis and R extraction
are necessary for extracting current and resistance information
for our model. We compare the runtime of R extraction, feature
extraction, and IR drop prediction in our proposed flow against
the rail analysis in the industrial flow. As shown in Table IV, our

proposed IR drop prediction method can achieve a 5X speed-up
compared to the industrial flow.

D. Discussion for Model Prediction Error

While the prediction results demonstrate the effectiveness of
our method, some prediction errors are inevitable. We have
identified two main causes for these errors.

First, our model evaluates standard cells using the worst-
average IR drop, but the input features lack specific timing
window information. To streamline feature extraction and pro-
cessing, we use power and peak current features to represent
average and worst-case current scenarios. This approach avoids
the complexities and significant preprocessing time required to
parse detailed timing window information.

Second, there is a timing discrepancy between the current-
related features and the IR drop values. To stabilize cell signals
in a design, a pre-simulation period is required for accurate IR
drop analysis. In our experiments, we set a 35ns pre-simulation
time for each 30ns slice. Thus, the tool reports the current-
related information over a total 65ns simulation time, but only
reports IR drop information of the targeted 30ns simulation
window. This discrepancy is due to the inherent limitations of
the used commercial tool, leading to unavoidable differences
between the input features and the IR drop labels.

Despite these prediction errors, the IR drop prediction from
our proposed method still exhibit a strong correlation with
the golden IR drop values. Thus, our method provides a
low prediction error and a high-recall IR drop quick-view,
significantly accelerating the IR signoff stage.

V. CONCLUSION

We have proposed a multi-type IR drop model for a fast
and accurate dynamic IR drop prediction. Our method makes
three main contributions: (i) the package-related input features
development, (ii) multi-type IR drop prediction, and (iii) the
Input Fusion Block (IFB) for unifying the units of the input
feature maps. Our experimental results demonstrate the across-
pattern transferability of our proposed model with an RMSE
of less than 5mV and an MSE of less than 2mV on the unseen
simulation patterns. Moreover, our proposed model can identify
over 90% hotspots in the design while achieving a 5X speed-up
compared to the industrial IR drop analysis using Voltus.
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